DECORATION #### **FORMAT** round 1 ### **Decoration** Main function: [to modify] [color of] [a surface] #### **SURFACES** Plastics: PVC (thermoplastic), ABS, thermosetting polymers Metal: steel, stainless steel, painted steel, aluminum, chrome Glass: vitroceramic, soda lime glass, colored (tinted) glass Porcelain Surface's shape: flat, 2D curved, 3D curved, perforated, textured surface ### **Question for Forecast** ### (Questions to be answered at the end of study) | What? | When? (time horizon) | Where? (market scope and geographic context) | |---|--|--| | Which is the most promising decoration technology for achieving present and future product need (quality, flexibility, cost effectiveness)? Will decoration technologies be needed? Which will be the expected (estimated) evolution of Main Parameters of ink-jet and laser marking? | in the future 5 to 10 years
(2019-2024) | for all products: refrigerators; ovens, microwave ovens; dishwashers; washing machines, dryers; cooktops at WHRIT factories in EMEA* | | When will inkjet technology be ready to substitute silk screening and pad printing for domestic appliances? When will laser marking be able to produce colored marks in plastic? | indefinite | -> for plastic surfaces | ### **FORMAT Methodology: Stage-Gate process** ## FORMAT Methodology from February 2 to April 2, 2014 (9 working sessions) | Stage / Gates | Meetings | Work Time | |---|----------|---------------------------| | (FOR) Diagnose questions and plan project | 4h | 2 workdays | | (M) Define the system for forecast and study contexts | 4hx4 | 8 workdays | | (A) Develop forecast for defined system and contexts | 4hx5 | 8 workdays | | (T) Prepare report and present results | 4h
4h | 3-5 workdays
1 workday | #### **PWR**: Mateusz Slupinski (seconded to WHRIT), Sebastian Koziolek #### WHRIT: Luca Ruggeri (seconded to PWR) Igor Kaikov #### PoliMi: Dmitry Kucharavy, Christopher Nikulin - Pierluigi Petrali - Fabrizio Sella - Marco Urbaz - Fabio Moneta - Michael Z. Cukier ## Model of STF at the functional level ## Functional model (1/4): silk screening = screen printing (static) ## Functional model (2/4): silk screening = screen printing (UV) ## Functional model (3/4): laser marking #### **Functional model:** ### Pad printing= (automatic) ### **Functional model:** ### Pad printing= (semi-automatic) ## Description of Competitive (Alternative) technologies and solutions ### List of decoration technologies considered at WH: - silk screening (screen printing); IN/OUT - 2. pad printing (tampography); b) multi-stations, c) with semi-automation; IN/OUT - 3. hot stamping; IN/OUT - 4. laser marking (laser graphic imaging); IN - 5. chemical etching (etching on metals; etching on glass); OUT - 6. Ceramic paste; OUT - 7. Inkjet printing; NOT YET USED IN/OUT refers to utilization of a particular technology IN Whirlpool factories or only as an element bought OUT side of Whirlpool. ## Competitive (Alternative) (1/7): silk screening (screen printing) Screen printing is a printing technique that uses a woven mesh to support an ink-blocking stencil to receive a desired image. A macro photo of a screen print with a photographically produced stencil. The ink will be printed where the stencil does not cover the substrate*. #### Disadvantages identified for silk screening | 1 | It is difficult to apply for curved surfaces, when radius is small | | |---|------------------------------------------------------------------------------------------|--| | 2 | High time consumption for pre-process (create design, molds, films, etc) | | | 3 | Only one color can be printed at the same time | | | 4 | Multiple stages to add additional color in the image (one color more = one machine more) | | ^[1] BoP, Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: ADVANCED MANUFACTURING, Whirlpool. Confidential ^[2] Session 1.2, 27-02-2014, Whirlpool Cassinetta. ^[3] http://en.wikipedia.org/wiki/Screen printing#Screen printing press # Competitive (Alternative) (2/7): pad printing Pad printing is a printing process that can transfer a 2-D image onto a 3-D object. This is accomplished using an indirect offset (gravure) printing process that involves an image being transferred from the cliché via a silicone pad onto a substrate. #### **Disadvantages identified for pad printing** - 1 Inadequate resolution and esthetic for large surface cause by pressure of the machine. - No metallic effect (may be an important factor for customer decision), limited flexibility to prepare colors . - 3 It is necessary pre-install films and clichés according each new image. - 4 Waste of films and clichés due to iterations for each new image. ^[1] BoP, Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: ADVANCED MANUFACTURING, Whirlpool. Confidential ^[2] Session 1.2, 27-02-2014, Whirlpool Cassinetta. ^[3] Pad-printing, description process: available: http://www.teca-print.ch/eng/Padprinting/Tampondruckverfahren_E_706-000-240.pdf ^[4] http://en.wikipedia.org/wiki/Pad_printing ## Competitive (Alternative) (3/7): hot stamping Hot stamping is a dry printing method of lithography in which pre-dried ink or foils are transferred to a surface at high temperatures. **Main feature of hot stamping at WH**: – applied for making a metal gloss decoration on substrate; – hot stamp pressing; – pressed cliché; – controllable pressing force; – applicable on plastics such ABS, polypropylene, enameled steel; – initial set up is complex. | Pros | Cons | |-------------------------------------------------------------------------------------------------|---------------------------------------------------| | Change over time is under 5 min | impractical for reworking | | Cycle time Non-polluting process because paint is dry | Low operation cost effectiveness | | Non-polluting process because paint is dry Durability, chemical resistance, abrasion resistance | High scrap rate Long change over under 1 cycle | | Relative low investment | Not easy for maintenance | | Chrome/metal appearance | Control of pressure power | | Resolution | Requires a cliché | | Environment friendly green | Initial set up is complex | | | 0.2 mm raised geometry is recommended for optimum | | | hot stamping transfer | ^[1] BoP, Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: ADVANCED MANUFACTURING, Whirlpool. Confidential ^[2] Wikipedia http://en.wikipedia.org/wiki/Hot_stamping ## Competitive (Alternative) (4/7): laser marking The laser beam modifies the material surface, creating permanent marks without removing material or impacting surface integrity². At WH it is applied for *making digitally processed decoration with zero change over time*. | Pros | Cons | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | zero change over (no tooling change required) – 1/1 principle in manufacturing possible to apply Durability Lower scrap rate Environment friendly green Range of application from small to large Resolution Change over over one cycle | Costly maintenance Costly utilities high cycle time Higher level of expertise for maintenance Exchange pieces (spare parts) are unique for particular application Chemical resistance worse then silk screening Low operation cost effectiveness No color complexity management No chrome/metallic appearance | ^[1] BoP, Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: ADVANCED MANUFACTURING, Whirlpool. Confidential ^[2] http://www.ulsinc.com/ ## Competitive (Alternative) (5/7): chemical etching Etching refers to the technique of creating decoration on the surface of metal or glass by applying acidic, caustic, or abrasive substances. | Pros | Cons | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Cheap, ¹ Relative low investment ³ Lower scrap rate ³ Ease of maintenance ³ almost no damage due to purely chemical nature, ¹ highly selective ¹ Durability, chemical resistance, abrasion resistance ³ Relative quick change over ³ Range of application small to large ³ | Inadequate anisotropy, ¹ inadequate process control (temperature sensitivity), ¹ inadequate particle control, ¹ high chemical disposal costs, ¹ difficult to use for small parts. ¹ No color complexity management ³ No chrome/metallic appearance³ Limited substrate application³ No environment friendly green ³ Long cycle time ³ Long change over under one cycle ³ | Isotropic² – Etching proceeds at equal rates in both horizontal and vertical direction Anisotropic² – Etching proceeds faster in one plane than in another Selectivity² – The ability of the etch process to distinguish between the layer to be etched and the material not to be etched [1] For wet chemical etching by Alan Doolittle, PhD, Georgia Tech, http://users.ece.gatech.edu/ \sim alan/ , Lecture 11 Etching Techniques Reading: Chapter 11 [2] Isotropic, Anisotropic, Selectivity – from: Maricopa Advanced Technology Education Center, part of the Academic Affairs Division, Maricopa Community College District [1] BoP, Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: ADVANCED MANUFACTURING, Whirlpool. Confidential # Competitive (Alternative) (6/7): inkjet printing **Inkjet printing** is a type of computer printing that creates a digital image by propelling droplets of ink onto paper, plastic, or other substrates. **Expected application at WH:** To make digitally processed decoration in wide scale of color with up to photorealistic resolution. #### Pros Cons - Graphics resolution (Photorealistic) - Entire surface can be covered - It is possible to apply on small surface - Digital image process (pre-process) is less than 30 min - customization of image with real-time data - Different kind of thickness for graphics - Diversity of colors applied on one surface - Gradient effect is possible - High flexibility for different types of images - Adequate cycle time [s/pcs] - · Adequate change over time - Relatively high process time for long surface. - Number of colors is constrained by cartridge from suppliers (It is not possible to create a new colors) - Ink performance is not adequate for corrosion - It's not possible to make the metallic colors ## **Description for STF** ### Definition of surface and substrate **Part** – A part of something is one of the pieces, sections, or elements that it consists of. [Collins COBUILD dictionary] **Surface** – it is a layer on the part where substrate is located. **Substrate** – an area of the surface on which an image (decoration) printed. the hierarchy definitions. The hierarchy of defined subjects Surface Substrate The front panel of washing machine Part #### System operator: super-systems 2004 - 1. Home appliances from different companies in one home - · Partially integrated - 2. WH appliances with less information - 3. Control Panel (CP) with less information and less control options - 4. Users manipulate - No touch-screen experience for user - 5. To attract client - Not so much concern about energy saving - Not so much attention to esthetic - New options less important - 6. recyclability of home appliance was less important - 7. Gradation of color was not relevant. - 8. In it not possible create customized CP - 9. Decoration of CP mostly by printed. - 10. Whirlpool authenticity (brand, logo, look of products) was less recognizable. 2014 - 1. Home appliances around (home) - Esthetically similar from 2 or 3 companies; - 2. WH appliances - Manual print and pdf - 3. Control Panel (CP) production and use - 4. Users⁵ manipulate - with CP to setup Home appliances (learn how to) - 5. To attract client - esthetic, - novelties - information - chemical resistances) - 6. recyclability of home appliance growth in importance - 7. Gradation of color it is possible with ink-jet (not applied in WH) - 8. It is possible to create customized CP in high-end appliances. - Combined decoration of CP (display + printed) - 10. Whirlpool authenticity (brand, logo, look of products) is recognizable. #### 2024 - 1. Home appliances from one hand (e.g. IKEA+WH) - Integrated esthetically, electronically and by datainformation - 2. WH appliances provide more information (more sensors & data) - Control Panel (CP) has to delivered more information and control - 4. Users manipulate (easy to setup) - More touch-screening experiences. - New Options are attractive - Easy to use. - 5. To attract customer - <u>esthetic</u>, - novelties, - easy to use, - smart energy consumption; - improved chem. resistances - 6. Recyclability will be more important - 7. Gradation of color in the design of CP?? - 8. User can create their own CP for more products - 9. Most of decoration of CP with an electronic User-Interface (multilanguage) - 10. Whirlpool authenticity (brand, logo, look of products) more recognizable. ² Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: Advanced Manufacturing, Whirlpool. Confidential ³ Session 1.2, 27-02-2014, Whirlpool Cassinetta. ⁴ Inkjet technology Marco Urbaz, Cassinetta, October, 2013 ⁵ Man, woman, elderly people, teenagers, kids FORMAT 'Decoration' round 1 ### System operator: system and sub-systems | Super-systems for 2004 | Super-systems for 2014 | Super-systems for 2024 | |--------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------| | | -{ | | | | | | | ······· | ······································ | | | <modify> <colors> <of surface=""></of></colors></modify> | <modify> <colors> <of surface=""></of></colors></modify> | <modify> <colors></colors></modify> | | 1. Output is mostly non-changeable | (to deliver information to users ⁵ & to | 1. Output of decoration is printed and/or | | (printed) | improve esthetic experience) | dynamic | | 2. Decoration process: | 1. Output of decoration is printed and | 2. Decoration process: | | • with large stock, | changeable (display) | • without stock, | | it is off-line,recyclability of equipment was | 2. Decoration process: | it is in-line ,increased recyclability of | | not an issue | with stock, it is off-line, equipment and to | | | energy consumption was not an | recyclability of equipment and | reduced energy consumption. | | important issue. | tools (!) | 3. More (??) investment for equipment, | | 3. Investment in equipment, tools, HR, | energy consumption (!) | HR and maintenances. | | maintenance was lower. | 3. Investment in equipment, HR and | Back side of Intermediate layer used for | | 4. Front surface used for decoration | maintenance is higher. | decoration | | | 4. Rear surface is used for decoration | | | | | | | | Silk screening | More diversity of applied technologies | | Silk screening (60%) | Pad printing | for different substrates and products. | | Pad printing (40%) | Others 10% | Time form operator's involvement will | | [| Laser marking | decrease; | | | | preprocess time decrease | | 2004 | 2014 | 2024 | ## Measure of Performance & Expenses for STF and for Competitive Solutions **Six decision criteria** (3 for performance and 3 for expenses): - 1. Controllability of printing process: more control on image - 2. Flexibility - 3. Productivity of process (pcs/h) - Maintainability (non-working, h) - 5. Integration level with production line - 6. Cost of equipment, operation and human resources (EUR) It is suggested to measure the growth and competition of decoration technologies by **number of parts** produced (decorated) **per Quarter** with a particular technology starting from 2004 (2009 at least) at European factories. Reference documents for required data: - DoP Declaration of Production, - OEE Overall Equipment Efficiency ### Summary for Competitive (Alternative) Content removed for confidentiality reasons ### Summary for Competitive (Alternative) Content removed for confidentiality reasons ### Summary for Competitive (Alternative) ² Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: Advanced Manufacturing, Whirlpool. Confidential FORMAT 'Decoration' round 1 ### TEES-constraints to STF TEES = Technological, Economic, Environmental, Social | TECHNOLOGICAL | ENVIROMENTAL | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | - Accessible to produce different kind of look and surfaces. (super-system) - Automation of production, less supplementary operations (such as prepare the ink and so on). (super-system) - Time to make decoration. (sub-systems) - Ambient conditions (temperature, humidity, level of UV, conditions of CP surface) should be stabile during production of decoration. (sub-systems) - Production of decoration should be integrated with main production line. (e.g. automation). (super-system) - performance of modified color (abrasion, chemical resistance, durability). (super-system) - material of cliché causes environmental impact. (super-system) | - Recyclability of equipment, tools, area, HR. (system) - material and substances has to be compatible with production process, home environment and HR, H&S (Health & Safety) ([1], page 14). (supersystem) | | ECONOMIC | SOCIAL | | - Initial investment in equipment, tools, area, human resources (HR). (system) - overall cost of running equipment (normative cost, before called SIC – S Industrial Cost). (system) - Investment for training HR. (system) - Low production cost. (super-system) - Amount of energy used for entire production process of WH appliance. (super-system) - Investment for maintenance. (system) - How much energy is consumed to modify colors? (system) | Result of decoration understandable for different groups of users (affordance). (supersystem) Results of decoration has to be customizable (super-system) Whirlpool authenticity has to be recognizable. (super-system) Education of operator in production process (adjustments, pre-installment). (supersystem) Quality of the image has to be attractive for users. (super-system) | ^[1] BoP, Herreria, J. L. Bill of Process Decorations for Plastic, Glass & Metal Substrate (2011). Benton Harbor: ADVANCED MANUFACTURING, Whirlpool. Confidential ^[2] Meeting 27-02-2014, Whirlpool Cassinetta. ^[3] Inkjet technology Marco Urbaz, Cassinetta, October, 2013 # Application to pad-printing and silk-screening technology - Recognize relevant patterns and analogical reasoning for envisioning future with patterns of evolution. - Definition of Minimum Technical System for padprinting and silk-screening - Recognize patterns for Tools, transmission, control and object. - Check coherence of the envisioned future with the available information about the context. ## Analogical reasoning for envisioning future with patterns of evolution: Silk-Screening - [1] Patent n° US 5419213 (A)(1993) "Apparatus and method for the silk-screen printing of multiple curved peripheral surfaces of an article defined by multiple curved peripheral surfaces" - [2] Patent nº US 2991711 (A) (1954) "Fully automatic silk-screen printing machine movement of surface" - [3]Patent nº EP 0265982 (A2) (1986) "Machine for the multi-colour silk-screen printing of cylindrical containers in general" - [4]Patent nº US 4848227 (A)(1981) "Device for the silk-screen printing of cylindrical objects having an elliptical cross-section" - [5] Inkcups Now(March-2014), http://www.inkcups.com/ - [6] http://www.triz.co.kr/TRIZ/frame.html - [7] Glenn Prestwich (2007). Instant insight: Organ printing, Highlights in Chemical Biology, 5. ## Analogical reasoning for envisioning future with patterns of evolution: Pad-Printing - [1]Dongguan Ruida Machinery And Equipment Co., Ltd.(March-2014) /http://dgnewman.en.alibaba.com/ - [2] Inkcups Now(March-2014), http://www.inkcups.com/ - [3] CarePrint (March-2014) http://www.padprinting.in/pad-printing-machine/ - [4] Patent n^{ϱ} US 6931988 (2004) "Rotary head pad printer" - [5] http://www.triz.co.kr/TRIZ/frame.html - [6] Glenn Prestwich(2007). Instant insight: Organ printing, Highlights in Chemical Biology, 5. ## Check coherence of the envisioned future with the available information about the company context | Technology | Minimum
Technical
System | Description of the past solution and patterns | Expected
benefits | |----------------------|--------------------------------|---|----------------------------------| | Both
technologies | ink | Increase the ink performance using different additive: Biological-ink is a ink that not produce environmental damage; Organ-ink is a ink that non-react with human interaction, nano-ink are possible future ink with new properties. | Drying time,
quality of image | | Both technologies | Substrate | Geometric evolution: Complexity of the shape surface has been increased given customers' demands. | Flexibility of the process | | Silk-
screening | control | Controllability: currently, there are automatic silk-
screening, but process can still reducing the time
consumption. | Process and pre-
process time | | Silk-
screening | Substrate | Dynamization: There are some silk-screening machines capable to move the substrate in order to improve the decoration process.(e.g. moving the substrate is possible to print curve surface) | Flexibility of the process | ## Check coherence of the envisioned future with the available information about the company context | Technology | Minimum
Technical
System | Description of the past solution and patterns | Expected benefits | |--------------------|--------------------------------|---|----------------------------| | Silk-
screening | Screen | Dynamization: Some silk-screening machines have a dynamic screen capable to track specific movement(e.g. horizontal). | Flexibility of the process | | Pad-printing | Pad | Dynamization: Some pad-printing machines have a dynamic pad capable to track specific movement(e.g. vertical, horizontal and angles). | Flexibility of the process | | Pad-printing | Pad | Micro-Macro: Size of the pad has been increased in the last year, however there some limitation in terms of ink performance. | Flexibility of the process | | Pad-Printing | Cliché | Substance-Field involvement: In the past, the cliché was attached at the machine using different types of nuts and bolts, now the cliché is magnetic in order to reduce the pre-process time. | Flexibility of the process | #### Analysis of the functional models (stage M) using Law of ideality increase [TRIZ]: towards ideal machine and ideal process #### Features, (functionalities in bold; evnences in regular) | expenses in regular) | | |--|---| | Controllability of printing process, more control on image | Full range of color management including metallic, performance maintained during entire time of use by users of a final appliance, | | Flexibility | Digital printing (no image preparation), change over t=0s, change over time for a part type t=0s | | Productivity of process [pcs/h] | Cycle time close to single color silk screening, no scrap | | Maintainability [non working, h] | No down time for maintenance like laser marking, towards self-maintaining | | Integration level with production line | Cycle time of decoration should be coordinated with cycle time of production line | | Price of machine [EUR] | Investment to new technology should be lower, below alternatives (delivering the same result), operation cost should decrease, environmental impact should be minimized | ## Solutions addressing limiting resources | Limiting resources | Solutions | |--|---| | Time of process to modify the color | Time below cycle time of production line | | Time for ink drying | UV curing with capacity for large size (or many) parts, time below cycle time of decoration | | Radius of substrate's surface | Decoration tool maintains a fixed distance to any surface shape; | | Area of contact between ink and substrate | Decoration and substrate are (tightly linked → are unified → are one) | | Extent of ink's ability to attach to substance | Deep attachment, on back surface, inside substance | ## What are the reasons preventing the adoption of the Next-technology with required features? - 1. Diversity of performed decorations demands different characteristics for applied technologies. Therefore, from business perspectives it is unlikely to satisfy all diversity of decorations by just one technology. - 2. Replacement of technologies is long-term improvement process; it has to be done in accordance with plan of renewal of equipment and production plans of Home appliance. - 3. In order to run *innovative technologies* for decoration (e.g. like inkjet printing with "flexible" ink on 3D substrates) **long-term investments into HR** are required. - 4. Requirements to perform **decoration in many languages** (particularity of EU market) put *Flexibility* and *Integration level with production line* to the first-importance places for future products of WH. - 5. Decision about investments into **In-house technologies** and **Out-sourcing** production is difficult to predict without knowing long-term strategy about production and development of WH.